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The universal mechanism resulting in the generalized synchronization regime arising in the chaotic oscilla-
tors with the dissipative coupling has been described. The reasons for the generalized synchronization occur-
rence may be clarified by means of a modified system approach. The main results are illustrated by unidirec-
tionally coupled Rössler systems, Rössler and Lorenz systems, and logistic maps.
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Chaotic synchronization is one of the fundamental phe-
nomena, widely studied recently �1�, having both theoretical
and applied significance �e.g., for information transmission
by means of deterministic chaotic signals �2,3�, in biological
and physiological �4� tasks, etc.�. Several different types of
chaotic synchronization of coupled oscillators—i.e., general-
ized synchronization �GS� �5,6�, phase synchronization �PS�
�1�, lag synchronization �LS� �7�, and complete synchroniza-
tion �CS� �8�—are well known. There are also attempts to
find a unifying framework for chaotic synchronization of
coupled dynamical systems �9–12�.

One of the interesting and intricate types of synchronous
behavior of unidirectionally coupled chaotic oscillators is the
generalized synchronization. The presence of GS between
the response xr�t� and drive xd�t� chaotic systems means that
there is some functional relation xr�t�=F�xd�t�� between sys-
tem states after the transient finished. This functional relation
F�·� may be smooth or fractal. According to the properties of
this relation, GS may be divided into strong synchronization
and weak synchronization, respectively �13�. There are sev-
eral methods to detect the presence of GS between chaotic
oscillators, such as the auxiliary system approach �14� or the
method of nearest neighbors �6,15�. It is also possible to
calculate the conditional Lyapunov exponents �CLE’s�
�13,16� to detect GS. The regimes of LS and CS are also the
particular cases of GS.

This Brief Report aims to explain the onset of GS. We
show the physical reasons leading to the appearance of GS in
unidirectionally coupled chaotic systems. The causes of the
generalized synchronization arising may be clarified by
means of a modified system approach.

Let us consider the behavior of two unidirectionally
coupled chaotic oscillators

ẋd = H�xd,gd� ,

ẋr = G�xr,gr� + �P�xd,xr� , �1�

where xd,r are the state vectors of the drive and response
systems, respectively; H and G define the vector fields of
these systems, gd and gr are the controlling parameter vec-

tors, P denotes the coupling term, and � is the scalar cou-
pling parameter. If the dimensions of the drive and response
systems are Nd and Nr, respectively, the behavior of the uni-
directionally coupled oscillators �1� is characterized by the
Lyapunov exponent �LE� spectrum �1��2� ¯ ��Nd+Nr

.
Due to the independence of the drive system dynamics on
the behavior of the response one, the Lyapunov exponent
spectrum may be divided into two parts: LE’s of the drive
system �1

d� ¯ ��Nd

d and CLE’s �16,17� �1
r � ¯ ��Nr

r . The
condition of GS is �1

r �0 �see �13� for details�.
The GS manifestation is mostly considered for two iden-

tical systems with equal or mismatched parameters and dif-
fusive type of unidirectional coupling. Therefore, let us con-
sider such systems first, while the case of different systems
and others coupling types will be briefly discussed later. In
the case of identical systems the dimensions of the drive and
response oscillators are equal �Nd=Nr=N� and Eqs. �1� may
be rewritten as

ẋd = H�xd,gd� ,

ẋr = H�xr,gr� + �A�xd − xr� , �2�

where A= ��ij� is the coupling matrix, �ii=0 or 1, and �ij

=0�i� j�. It is clear that the dynamics of the response system
may be considered as the nonautonomous dynamics of the
modified system,

ẋm = H��xm,gr,�� , �3�

under the external force �Axd,

ẋm = H��xm,gr,�� + �Axd, �4�

where H��x ,g�=H�x ,g�−�Ax. Note that the term −�Ax
brings the dissipation into the modified system �3�.

So GS arising in Eqs. �2� with parameter � increasing may
be considered as a result of two cooperative processes taking
place simultaneously. The first of them is the growth of the
dissipation in the system �3�, and the second one is the in-
creasing of the amplitude of the external signal. Both pro-
cesses are correlated with each other by means of the param-
eter � and cannot be realized in the coupled oscillators
system �2� independently. Nevertheless, let us consider these
processes separately to understand better the mechanisms of
the onset of GS. We start our considering with the autono-
mous dynamics of the modified system �3�.
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For this modified system xm�t�, the quantity � is the dis-
sipation parameter. When � is equal to zero the dynamics of
the modified system xm�t� coincides with the response sys-
tem xr�t� without coupling. With increasing of the dissipation
parameter � the dynamics of the modified system �3� should
be simplified. Therefore, the system xm�t� has to undergo a
transition from chaotic oscillations to periodic ones and, per-
haps, to the stationary state �if the dissipation is large
enough�. In this case one of the Lyapunov exponents, �0

m, of
the modified system is equal to zero �or is negative if the
stationary state takes place�; all other Lyapunov exponents
are negative �0��1

m� ¯ ��N−1
m �. It is important to note that

the Lyapunov exponent spectrum of the modified system �3�
differs from the CLE spectrum �1

r � ¯ ��N
r of the system

�2�, as CLE’s depend on the drive system dynamics in con-
trast to Lyapunov exponents of the modified system xm�t�.
Therefore, no conclusion can be drawn about the appearance
of GS in the coupled oscillators system �2� taking into ac-
count only Lyapunov exponents of the modified system �3�.

On the contrary, the external signal in Eq. �4� tends to
impose the dynamics of the drive chaotic oscillator xd�t� on
the modified system xm�t� and, correspondingly, complicate
its dynamics. Obviously, GS may take place only if the
proper chaotic dynamics of the system xm�t� is suppressed by
the dissipation. Only under this condition will the current
state xm�t� of the modified system be determined completely
by the external signal—i.e., xm�t�=F�xd�t��. According to
Eq. �4�, the functional relation xr�t�=F�xd�t�� between the
response and drive systems will also take place, and, there-
fore, GS will be observed.

So GS arising in the system �2� is possible for such values
of � parameter when the modified system xm�t� demonstrates
the periodic oscillations or the stationary state. It is well
known that even the harmonic external signal can cause cha-
otic oscillations in the dynamical system with periodical dy-
namics. Therefore, the periodic regime should be stable
enough for the external force not to excite the proper chaotic
dynamics of the modified system. So the difference between
the parameter values �p when the periodic oscillations take
place in the system �3� and �GS when GS in the system �2�
can be observed has to be large enough. At the same time,
the amplitude of the external signal is small enough in com-
parison with the amplitude of periodic oscillations in the
modified system xm�t� �in the case when the periodical re-
gime takes place in Eq. �3��. So the generalized synchroni-
zation looks like the weak chaotic excitation of the periodical
motion.

The similar conclusion is also correct for the stationary
regime of the system xm�t� when GS manifests itself as a
chaotic perturbation of the fixed state. The system dynamics
can be considered as transient converging to the “fixed”
point moving under the external force in the phase space of
the modified system �3�. Let us suppose now that the con-
trolling parameters gr,d of the considered response and drive
systems differ from each other slightly and the value of pa-
rameter � is large enough. In this case the transient is very
short and the state of the modified system follows the per-
turbed “fixed” state at essentially a small time � of the delay;
therefore, the regime of LS can be observed.

Let us consider several examples of GS to illustrate the
concept described above. As the first system we have se-
lected two unidirectionally coupled Rössler oscillators

ẋd = − �dyd − zd,

ẏd = �dxd + ayd,

żd = p + zd�xd − c� , �5a�

ẋr = − �ryr − zr + ��xd − xr� ,

ẏr = �rxr + ayr,

żr = p + zr�xr − c� , �5b�

where � is a coupling parameter and �r=0.95. The control
parameter values have been selected by analogy with �18� as
a=0.15, p=0.2, and c=10.0. Correspondingly, the modified
Rössler system is

ẋm = − �rym − zm − �xm,

ẏm = �rxm + aym,

żm = p + zm�xm − c� . �6�

In Fig 1�a� the bifurcation diagram for the system �6� is
shown. It is clear that this system undergoes the transition
from chaotic to periodic oscillations through the inverse cas-
cade of period doubling. The dependence of the two largest
Lyapunov exponents �0,1

m on the parameter � is presented in
Fig. 1�b�. One can easily see that starting from the value
�p�0.06 the periodic oscillations take place in the modified
system �6�.

Figure 1�c� demonstrates the dependence of the fourth
largest Lyapunov exponents of coupled Rössler oscillators
�5� with the slight mistuning of the control parameter
�d��d=0.99� on the coupling strength �. Two of them �1

d and
�2

d correspond to the behavior of the drive system; therefore,
they do not depend on �. Two other quantities �1,2

r are the
conditional Lyapunov exponents. When the coupling param-
eter � is equal to zero, �1

r �0 and �2
r =0. With the parameter

� increasing the second CLE �2
r becomes negative ��

�0.04�, but the dynamics of the modified system �6� remains
still chaotic ��1

m�0�. With further increasing of the � value
the dynamics of the modified system �6� becomes periodical
�see Figs. 1�a� and 1�b��, but GS is not yet observed. It takes
place only when the periodical regime of the modified sys-
tem �6� is stable enough ��GS�0.11�. In this case the
period-1 cycle is realized in the modified Rössler system.
Below the critical value �c�0.15 the modified Rössler sys-
tem comes to the stationary state. Note that when the peri-
odical regimes take place in the modified system, the value
of the highest CLE is slightly negative if GS is realized. As
soon as the stationary state of the modified system �6� be-
comes stable the value of �1

m starts to decrease rapidly.
Note also that the onset of GS is determined by the sta-

bility of the periodic regimes of the modified system �3�
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which does not depend on the mismatch of the control pa-
rameters gd,r of the unidirectionally coupled oscillators. The
stability of the periodical regimes is caused by the property
of the modified system only. Therefore, the value of �GS
should not depend greatly on the parameter mistuning (com-
pare the values of �GS for the �d=0.99 �Fig. 1�c�� and �d

=1.3 �Fig. 1�d��). This conclusion agrees well with numerical
results of �18�.

Let us briefly discuss why the onset of GS does not coin-
cide with any bifurcation point of the modified system �com-
pare Figs. 1�a� and 1�b� with Figs. 1�c� and 1�d��. The cause
of this noncoincidence is the influence of the external signal
on the modified system. As has already been discussed above
the external signal �even if it is harmonic� can excite proper
chaotic oscillations in the dynamical system with periodic
dynamics. Therefore, the bifurcation points of the modified
system under the external signal will be shifted in the direc-
tion of the large values of the � parameter in comparison
with the autonomous dynamics of the modified system. It is
clear that the onset �GS of GS cannot coincide with the bi-
furcation point of the autonomous modified system.

This statement is illustrated in Fig. 1�e� where the bifur-
cation diagram for the response system �6� under the external
harmonic signal simulating the drive system signal is shown.
One can see that all bifurcation points of the modified system
in the nonautonomous regime are shifted in the direction of
the larger values of the � parameter �compare Fig. 1�a� and
Fig. 1�e��.

The same effects take place when GS is observed in the
discrete maps. For example, GS takes place for the coupling
parameter values ���GS�0.32 �see �13� for details� in two
unidirectional coupled logistic maps

xn+1 = f�xn� ,

yn+1 = f�yn� + ��f�xn� − f�yn�� , �7�

where f�x�=4x�1−x�. Following the concept described
above one can construct the modified system

zn+1 = �1 − ��f�zn� = azn�1 − zn� �8�

�where a=4�1−��� and obtain that the value �GS corresponds
to the value of a�2.72 of Eq. �8�. For such a value param-
eter an attractor of the logistic map is the stable fixed point
x0= �a−1� /a.

Let us briefly discuss now the case of GS between oscil-
lators of different types or when the coupling between oscil-
lators is not diffusion. Several examples of such systems are
known �see, e.g., �13,14��. Obviously, if the coupling type is
diffusion, the difference of the system types does not matter
and all reasons mentioned above remain true. But what hap-
pens when GS takes place in the systems coupled in different
way, rather than in Eq. �2�? One of the examples of such
systems �see �13� for detail� is the coupled Rössler �drive�

ẋd = − 	�yd + zd� ,

ẏd = 	�xd + ayd� ,

żd = 	„p + zd�xd − c�… �9�

�	=6, a=0.2, p=0.2, c=5.7� and Lorenz �response�

FIG. 1. The bifurcation diagram �a� and the dependence of two
Lyapunov exponent �0,1

m �b� of the modified Rössler system �6� on
the parameter �. The third Lyapunov exponent is about �2

m�−9.7
and is not significant for our considering. The value of parameter �p

when the modified system starts demonstrating the periodic dynam-
ics is shown by an arrow. �c�,�d� The dependence of the Lyapunov
exponent spectrum on the parameter � for slightly ��d=0.99� and
greatly ��d=1.3� detuned Rössler systems, respectively. The onset
of GS is marked by an arrow. Conditional Lyapunov exponents are
presented by dashed ��1

r� and dotted ��2
r� lines. �e� The bifurcation

diagram for the nonautonomous modified system. The first equation
in Eqs. �6� is replaced by ẋm=−�rym−zm−�xm+A cos�
t� where
A=1.32, 
=1.0, which simulates the parameters of the drive
Rössler system. The value of the parameter �p corresponding to the
onset of the periodic oscillation is shown by an arrow.
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ẋr = ��yr − xr� ,

ẏr = rxr − yr − xrzr + �yd,

żr = − bzr + xryr �10�

systems, where �=10, r=28, and b=8/3. It is known �13�
that the value of the coupling strength corresponding to the
onset of GS is �GS�6.66. The amplitude of oscillations of
the yd coordinate of the Rössler system for selected param-
eter values is about 10; the amplitude of the yr coordinate of
the Lorenz system being in the autonomous regime ��=0� is
about 20. Obviously, the amplitude of the external signal
�GSyd introduced into the response system �near the threshold

of GS regime arising� is about 60. So the magnitude of the
external force exceeds the level of proper system oscillations
in several times. This situation is illustrated in Fig. 2 where
the time series of yr�t� corresponding to the autonomous dy-
namics of the response system �10� and the external force
�GSyd�t� are shown. It is clear that the great external force
destroys completely the proper dynamics of the response
system; the phase trajectory of the Lorenz system is moved
into the regions of the phase space with the strong dissipa-
tion, and the mechanism discussed above causes the appear-
ance of GS.

In conclusion, we have explained the appearance of GS.
The modified system approach has been proposed to demon-
strate the reasons of for the appearance of GS. We have
shown that the behavior of the response chaotic system is
equal to the dynamics of the modified system �with the ad-
ditional dissipation� under the external chaotic force. The
coupling parameter increase is equivalent to the simulta-
neous growth of the dissipation and the amplitude of the
external signal.
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